Technology and Community in Toolkits for
Musical Interface Design

Andrew P. McPherson
Centre for Digital Music
Queen Mary University of London, UK
a.mcpherson@qmul.ac.uk

ABSTRACT

This position paper discusses toolkits for creating digital musi-
cal instruments. Musical interaction imposes stringent techni-
cal requirements on interactive systems, including high spatial
and temporal precision and low latency. Social and community
factors also play an important role in musical interface toolk-
its, including design sharing and the ability of performers and
composers to count on the longevity of an instrument. This
paper presents three examples of musical interface toolkits, in-
cluding our own Bela, an open-source embedded platform for
ultra-low-latency audio and sensor processing. The paper also
discusses how the requirements of specialist musical interface
toolkits relate to more general HCI toolkits.

ACM Classification Keywords
H.5.5. Sound and Music Computing: Systems; H.5.1. Multi-
media Information Systems: Evaluation/Methodology

Author Keywords
Toolkit, digital musical instrument, embodied interaction,
maker community, latency, longevity, pluggable communities.

INTRODUCTION

Musical interaction presents a number of interesting opportuni-
ties and challenges for HCI. Many digital musical instruments
(DMIs), like their acoustic counterparts, are useful case stud-
ies in embodied interaction: extended practice leads to the
instrument becoming a transparent extension of the musician’s
body, where the operations of manipulating the instrument
become automatic, allowing the musician to focus on higher-
level musical actions [20]. Musical interaction also places
stringent technical demands on digital systems, including spa-
tial and temporal precision, high sensor and audio bandwidth,
predictability and low latency [7].

Toolkits for creating DMIs have become increasingly common
[18, 21, 19, 2, 23, 13, 5], with different projects aimed at a
variety of musical contexts and technical skill levels. These

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

CHI 2017, May 6-11, 2017, Denver, CO, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-4655-9/17/05 ...$15.00.
http://dx.doi.org/10.1145/3025453.3026056

Fabio Morreale
Centre for Digital Music
Queen Mary University of London, UK
f.morreale @gmul.ac.uk

toolkits share a desire to enable musicians who are not engi-
neers to create their own high-quality instruments by solving
common technical challenges and optimising for the qualities
musicians find important.

DMI toolkits provide a common platform for instrument cre-
ators to share designs, which serves both research and artistic
goals. It takes time for performers to acquire expertise on a
new instrument, and encouraging composers to write music
for a new instrument requires assurance that the instrument
will remain in existence for the piece to continue to be played
[15].

In the DMI community, published papers typically contain
insufficient detail to fully replicate an instrument design, espe-
cially in regard to aesthetic choices and fine details of crafts-
manship which are important to the performer experience but
might not follow established scientific processes. Some online
DMI repositories have been created! inspired by more general
sharing platforms such as Instructables,” however this remains
an outstanding challenge for the DMI community. DMI toolk-
its, by providing a common platform for designers, reduce the
barriers to exchanging fully functioning designs.

This position paper explores the current state of musical inter-
face toolkits and their relation to more general HCI toolkits.

IFor example, Muzhack by Arve Knudsen: https://muzhack.com
2http ://www.instructables.com

Figure 1. Bela, which consists of a custom hardware board (‘“cape”) on
a BeagleBone Black running specialised software.

https://muzhack.com
http://www.instructables.com

We discuss both technical and social challenges for toolkit
design, including the central role of the user community in
sustaining a viable toolkit. We then present three established
toolkits, including our own Bela® (Figure 1), an open-source
embedded hardware platform for ultra-low-latency audio and
sensor processing [13]. We conclude with suggestions for
toolkit designers and topics for discussion at the workshop.

THREE CHALLENGES FOR HCI TOOLKITS

The technical and social challenges we discuss in this section
are particularly important for musical interface toolkits, but
also apply to HCI toolkits more generally.

Latency

Action-to-sound latency (delay) is a critically important factor
in DMI design. Wessel and Wright recommended that DMIs
exhibit no more than 10ms latency with no more than 1ms
jitter (variation in latency) [24]. An experiment with a digi-
tal percussion instrument confirmed these recommendations,
showing that performers rated an instrument with consistent
10ms latency the same as one with under 1ms latency, but that
20ms and 10ms =+ 3ms of jitter both rated significantly lower,
even when performers did not identify an audible delay [7].

The effects of excess latency include making the instrument
feel less responsive, reducing its perceived quality, and po-
tentially disrupting the sensorimotor processes needed for
accurate performance. Latency can also be used for deliberate
effect: for example, in a multimodal smartphone interface,
adding latency to the tactile feedback channel made virtual
buttons feel heavier [8].

Surprisingly, 15 years after Wessel’s recommendation of less
than 10 & Ims latency, many commonly used tools for creat-
ing DMIs do not meet this standard [14] with jitter posing a
particular problem. Achieving low and consistent latency also
remains an issue for embodied interaction in other contexts.

Longevity

Many experimental DMIs are designed to be used for only
a few performances, but some continue to be used for many
years. Once a DMI is created, there is typically little incentive
to upgrade its hardware and software, as any change to form or
behaviour might disrupt its familiarity to the performer. When
DMIs are built using laptops or mobile devices, however, the
aim of long-term stability comes into conflict with the need
for regular system updates.

Hardware toolkits based on embedded processors (e.g. [2,
13]) provide a potential solution by allowing the instrument to
operate standalone without a computer. Ideally, the instrument
can be maintained indefinitely on this dedicated hardware. In
practice, keeping a DMI toolkit operational over many years
remains a challenge. Toolkit design considerations include:
high reliability, minimum external hardware or software de-
pendencies, rapid setup time (especially when revisiting an
instrument after a long period of disuse) and availability of
spare parts. The last consideration points to the value of open-
source hardware designs [17], or at least the use of commodity
hardware where possible.

3http://bela.io

Another question for toolkit designers is whether they seek to
support prototyping, extended use, or both. Few mass-market
commercial products would be built with HCI toolkits, but at
least in the DMI community, it is not uncommon for a toolkit
to be used for both prototyping and subsequent production on
a scale of dozens or even hundreds of instruments.

Community

The utility of a toolkit cannot be assessed solely by its techni-
cal specifications, nor even by the quality of its documentation.
An active and cooperative user community also plays a major
role in making a toolkit useful to new designers [4, 10]. The
success of open-source platforms like Arduino and Processing
owes as much to their vibrant online communities as to their
engineering features. These communities contribute by pub-
lishing example code, providing technical support, creating
hardware and software accessories, and helping the original
designers maintain the core platforms.

In [17] we explore the process of creating a community around
an open-source platform based on our experiences with Bela
[13] (described below). We observed that the Bela community
grew not only around the intrinsic features of Bela itself, but
also through connecting to other established open-source tools.
We describe this process as pluggable communities: growing
a new community in discrete leaps by leveraging established
communities around other tools.

THREE MUSICAL INSTRUMENT TOOLKITS

Many musical interface toolkits have been created. The three
mentioned here are all open source, publicly available toolkits
for creating standalone musical instruments, and all three are
still in regular use.

Satellite CCRMA

Satellite CCRMA [2] is a platform for building musical instru-
ments which eliminates the need for a computer. It consists
of an ARM Linux distribution with several popular audio pro-
gramming environments preinstalled, and it is accompanied
with a set of example materials for creating instruments [1].
Originally created for the BeagleBoard* single-board com-
puter, it has since been released for the popular Raspberry
Pi. Instruments built with Satellite CCRMA frequently make
use of an Arduino® microcontroller board for gathering sensor
data, with the Raspberry Pi responsible for audio processing.

Satellite CCRMA is in regular use by DMI designers. Its web-
site® links to performances of instruments built with it, and a
wiki and online forum provide a means for the community to
share knowledge. Its use of the widely available Raspberry
Pi, with no dependence on custom hardware, means that the
platform itself should be maintainable for years to come, and
that software should be easily shared amongst different users.
Leaving to the designer decisions on sensors and other ex-
ternal hardware provides significant flexibility, but with the
tradeoff of placing responsibility on the designer to maintain
and document their own hardware contributions.

4http ://beagleboard.org
5http ://arduino.cc
6https ://ccrma.stanford. edu/~eberdahl/Satellite/

http://bela.io
http://beagleboard.org
http://arduino.cc
https://ccrma.stanford.edu/~eberdahl/Satellite/

Hoxton OWL

The Hoxton OWL [23] is an open-source programmable audio
effects pedal. More recently, it has also been released as
a synth module in the popular Eurorack form factor. Like
Satellite CCRMA, the OWL is designed for creating musical
instruments and audio processing systems, and features a large
example library and an active online community.’

In contrast to Satellite CCRMA, the OWL is a complete hard-
ware unit based on a custom (though open source) design.
Thus, where DMI creators using Satellite CCRMA would
likely add their own sensors and other hardware, OWL cre-
ators will typically work with the existing controls and focus
on software development. Though this reduces the variety
of interactive systems that can be created, it makes design
sharing especially straightforward. Since the OWL pedal is
a self-contained device in a robust stage box, it is likely that
any designs running on it can be maintained for many years,
though the ability to edit code on the device will remain de-
pendent on a working computer-based compiler toolchain.

Bela

Our lab has created Bela [13] (Figure 1), an embedded plat-
form for ultra-low-latency audio and sensor processing. Bela
is based on the BeagleBone Black® single-board computer
with a custom expansion board (“‘cape’”) providing stereo au-
dio I/O with onboard speaker amplifiers, 8 channels each of
16-bit analog I/O and 16 digital I/Os. It uses the Xenomai real-
time Linux kernel extensions to process audio and sensor data
at higher priority than anything else on the board, including
the Linux kernel itself.

The signature feature of Bela is its extremely low latency, un-
der 1ms round-trip for audio or down to 100us for analog
and digital data, with less than 25us of jitter, outperforming
other computer audio environments [14]. It also features an on-
board, browser-based IDE with support for C/C++, PureData
and SuperCollider programming languages, and an in-browser
oscilloscope. Like Satellite CCRMA, Bela is designed for cre-
ating self-contained musical instruments, where the designer
attaches their own sensor hardware and Bela handles all the
computation that would normally be performed by a laptop
and a microcontroller board like Arduino.

The platform that later became Bela was originally created for
the D-Box, a musical instrument designed to be modified and
hacked by the performer [25]. In a CHI 2017 paper [17], we
describe the process of developing it from a single-function
device to a maker community platform, gradually broadening
its scope and improving usability. In April 2016, Bela suc-
cessfully launched on Kickstarter with the support of over 500
backers. Hardware and open-source design plans are available
for sale and download,?, and we maintain a library of example
projects and an online forum!'? for community support and
idea exchange.

7https://hoxtonowl.com

8https://beagleboard.org/black

9https://shop.bela.io and http://bela.io/code, respectively
10http://forum.bela.io

OUR RELATED WORK

The Augmented Instruments Laboratory,'! led by the first au-
thor, is a research team within the Centre for Digital Music
at Queen Mary University of London. An augmented instru-
ment is a traditional musical instrument whose capabilities
have been technologically extended, maintaining the familiar-
ity and cultural connotations of the original instrument while
extending its capabilities.

In addition to Bela [13], described in the preceding sec-
tion, our previous projects include several augmented in-
struments including the magnetic resonator piano [15],
an electromagnetically-actuated acoustic grand piano and
TouchKeys [12], a sensor kit adding multi-touch sensing to
the surface of the piano keyboard. Our research also encom-
passes studies of performer-instrument interaction in solo [7]
and group [16] settings and studies of audience perception of
performance [3].

CONCLUSION: POSITION ON TOOLKITS

As creators of an open-source DMI toolkit, we are especially
interested in the potential for toolkits to broaden access to
interactive system design. HCI toolkits, including those for
creating musical interfaces, contribute to and benefit from
larger trends in maker culture [9]. Here we set out two specific
arguments for possible discussion at the workshop.

Toolkits need a two-way dialogue with their communities

User-centred and participatory design methodologies have
long histories in HCI, so to say that a toolkit should respond
to the needs of its community borders on cliché. In fact,
we would argue that there is a risk in being foo reactive to
perceived user requirements. It has long been observed that
people use technology in unexpected ways, and this process
of appropriation has influenced HCI design methods [6]. Sim-
ilarly, the history of music is replete with examples of people
playing instruments in unexpected ways [25]. Performers,
upon encountering a new instrument, explore its creative op-
portunities and constraints [11], but they should not be ex-
pected to imagine hypothetical capabilities of instruments that
do not yet exist [15].

We argue that HCI toolkits, while being sensitive to community
needs, should also express the creative intentions of the toolkit
designer. This way, the designer not only contributes new ideas
back to the community, they also provide unique “signature
features” that may improve the uptake of their tools [17].

No toolkit is aesthetically neutral

Every musical instrument encourages certain possibilities
while discouraging others. Some constraints are obvious: the
piano can only play 88 discrete notes, and does not allow the
performer to shape them after they are struck. Others are less
obvious: patterns of notes in piano music are typically those
which fit the shape of the hand, which are different than the
patterns likely to be convenient on a wind or string instrument.
Similarly, even if two DMIs can control identical dimensions
of the sound, their differing physical designs might encourage
different choices of actions.

11http://www.eecs.qmul.ac.uk/~andrewm

https://hoxtonowl.com
https://beagleboard.org/black
https://shop.bela.io
http://bela.io/code
http://forum.bela.io
http://www.eecs.qmul.ac.uk/~andrewm

Tuuri et al. [22] distinguish between push effects which force
or guide the user to particular choices, versus pull effects which
relates to the ease of conceiving how an action relates to an
output. Music programming languages, supposedly able to
create any sound, may nonetheless exhibit strong pull effects
by making certain structures and actions easier than others.
For that reason we might speculate that every computer music
language has its own signature sound.

More broadly, we would argue that toolkit designers can and
should embrace the aesthetic influence of their toolkits. A
good toolkit might allow the creation of many different types
of systems with widely varying aesthetics, but certain possi-
bilities will always be more obvious than others. Rather than
striving for an elusive neutrality, toolkit creators might do best
to acknowledge their own personal outlook and the influence
it is likely to have on designers and end users.

ACKNOWLEDGEMENTS

This work was funded by EPSRC under grant EP/N005112/1
(Design for Virtuosity: Modelling and Supporting Expertise
in Digital Musical Interaction).

REFERENCES
1. Edgar Berdahl. 2014. How to Make Embedded Acoustic
Instruments.. In Proc. NIME.

2. Edgar Berdahl and Wendy Ju. 2011. Satellitt CCRMA: A
Musical Interaction and Sound Synthesis Platform.. In
Proc. NIME.

3. S Astrid Bin, Nick Bryan-Kinns, and Andrew McPherson.
2016. Skip the Pre-Concert Demo: How Technical
Familiarity and Musical Style Affect Audience Response.
In Proc. NIME.

4. Leah Buechley and Benjamin Mako Hill. 2010. LilyPad
in the wild: how hardware’s long tail is supporting new
engineering and design communities. In Proceedings of
the 8th ACM Conference on Designing Interactive
Systems. ACM, 199-207.

5. Filipe Calegario, Marcelo M Wanderley, Stéphane Huot,
Giordano Cabral, and Geber Ramalho. 2017. A Method
and Toolkit for Digital Musical Instruments: Generating
Ideas and Prototypes. IEEE MultiMedia 24, 1 (2017).

6. A. Dix. 2007. Designing for appropriation. In Proc.
British HCI Group Conf. on People and Computers.

7. Robert H Jack, Tony Stockman, and Andrew McPherson.
2016. Effect of latency on performer interaction and
subjective quality assessment of a digital musical
instrument. In Proceedings of the Audio Mostly 2016.

8. Topi Kaaresoja and Stephen Brewster. 2010. Feedback
is... late: measuring multimodal delays in mobile device
touchscreen interaction. In International Conference on
Multimodal Interfaces.

9. Stacey Kuznetsov and Eric Paulos. 2010. Rise of the
expert amateur: DIY projects, communities, and cultures.
In Proc. NordiCHI.

11.

12.

13.

14.

15.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. Silvia Lindtner, Garnet D Hertz, and Paul Dourish. 2014.

Emerging sites of HCI innovation: hackerspaces,
hardware startups & incubators. In Proc. CHI.

T. Magnusson. 2010. Designing Constraints: Composing
and Performing with Digital Musical Systems. Computer
Music J. 34 (2010), 62-73. Issue 4.

A. McPherson, A. Gierakowski, and A. Stark. 2013. The
space between the notes: adding expressive pitch control
to the piano keyboard. In Proc. CHI.

Andrew McPherson and Victor Zappi. 2015. An
environment for submillisecond-latency audio and sensor
processing on BeagleBone Black. In Proc. AES 138th
Conv.

Andrew P McPherson, Robert H Jack, Giulio Moro, and
others. 2016. Action-Sound Latency: Are Our Tools Fast
Enough?. In Proc. NIME.

Andrew P McPherson and Youngmoo E Kim. 2012. The
problem of the second performer: Building a community
around an augmented piano. Computer Music Journal 36,
4 (2012), 10-27.

. Fabio Morreale, Antonella De Angeli, Raul Masu, Paolo

Rota, and Nicola Conci. 2014. Collaborative creativity:
The music room. Personal and Ubiquitous Computing 18,
5(2014).

Fabio Morreale, Giulio Moro, Alan Chamberlain, Steve
Benford, and Andrew P. McPherson. 2017. Building a
Maker Community Around an Open Hardware Platform.
In Proc. CHI.

Axel Mulder. 1995. The I-Cube system: moving towards
sensor technology for artists. In Proc. of the Sixth
Symposium on Electronic Arts (ISEA 95).

D. Newton and M. T. Marshall. 2011. Examining How
Musicians Create Augmented Musical Instruments. In
Proc. NIME.

Luc Nijs, Micheline Lesaffre, and Marc Leman. 2009.
The musical instrument as a natural extension of the
musician. In Proc. Interdisciplinary Musicology.

Dan Overholt. 2006. Musical interaction design with the
Create USB interface. In Proc. ICMC.

Kai Tuuri, Jaana Parviainen, and Antti Pirhonen. 2017.
Who Controls Who? Embodied Control Within
Human-Technology Choreographies. Interacting with
Computers (2017).

Thomas Webster, Guillaume LeNost, and Martin Klang.
2014. The OWL programmable stage effects pedal:
Revising the concept of the on-stage computer for live
music performance.. In Proc. NIME.

D. Wessel and M. Wright. 2002. Problems and Prospects
for Intimate Musical Control of Computers. Computer
Music Journal 26, 3 (2002), 11-22.

Victor Zappi and Andrew McPherson. 2014. Design and
Use of a Hackable Digital Instrument. In Proc. Live
Interfaces.

	Introduction
	Three Challenges for HCI Toolkits
	Latency
	Longevity
	Community

	Three Musical Instrument Toolkits
	Satellite CCRMA
	Hoxton OWL
	Bela

	Our Related Work
	Conclusion: Position on Toolkits
	Toolkits need a two-way dialogue with their communities
	No toolkit is aesthetically neutral

	Acknowledgements
	REFERENCES

